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What is Depth First Search (DFS)?
Traversal technique used to visit all nodes of the tree
Depth-first strategy to explore as far along each branch as possible before
backtracking
Time complexity is O(V + E)
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DFS implementation
https://thealgoristsblob.blob.core.windows.net/thealgoristsimages/dfs.gif

vector<int> adj[100005]; // Adjacency list representation

bool seen[100005]; // Array to keep track of visited nodes

void dfs(int node) {

seen[node] = true; // Mark the current node as visited

// Iterate through all adjacent nodes of the current node

for (int i = 0; i < adj[node].size(); i++) {

int adjacentNode = adj[node][i];

// If the adjacent node hasn't been visited, recursively call dfs on it

if (!seen[adjacentNode]) {

dfs(adjacentNode);

}

}

}
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DP On Trees
As with regular DP, we’re trying to break a problem down into subproblems. When solving
tree problems, we will often build up our solution by combining information from the same
problem applied to subtrees.
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Framework
1 Pick a node to root your tree at (this can be arbitrarily done).

2 Define how to solve the given problem by combining solutions to the same problem
from the subtrees of the root.

This is where the DP magic happens, as you express how the solution at a given node
depends on the solutions of its subproblems.
Eg. to find the largest value in a tree, we can take the maximum value out of the current
root’s value and the max value in all its subtrees (ie. solving the same problem for the
root’s subtrees).

3 Determine your base cases
Usually a leaf node (or a subtree with a single node). The max value in this tree is
trivially the only value.

Programming Committee Advanced Dynamic Programming Week 1 Friday T2 2024 5 / 33



Framework
1 Pick a node to root your tree at (this can be arbitrarily done).
2 Define how to solve the given problem by combining solutions to the same problem

from the subtrees of the root.
This is where the DP magic happens, as you express how the solution at a given node
depends on the solutions of its subproblems.
Eg. to find the largest value in a tree, we can take the maximum value out of the current
root’s value and the max value in all its subtrees (ie. solving the same problem for the
root’s subtrees).

3 Determine your base cases
Usually a leaf node (or a subtree with a single node). The max value in this tree is
trivially the only value.

Programming Committee Advanced Dynamic Programming Week 1 Friday T2 2024 5 / 33



Framework
1 Pick a node to root your tree at (this can be arbitrarily done).
2 Define how to solve the given problem by combining solutions to the same problem

from the subtrees of the root.
This is where the DP magic happens, as you express how the solution at a given node
depends on the solutions of its subproblems.
Eg. to find the largest value in a tree, we can take the maximum value out of the current
root’s value and the max value in all its subtrees (ie. solving the same problem for the
root’s subtrees).

3 Determine your base cases
Usually a leaf node (or a subtree with a single node). The max value in this tree is
trivially the only value.

Programming Committee Advanced Dynamic Programming Week 1 Friday T2 2024 5 / 33



Let’s solve a problem
You are given a tree consisting of n nodes. Your task is to determine the diameter of the
tree. The diameter of a tree is the maximum distance between two nodes.

Here we have a tree with diameter 6, which is provided by the path from 8 to 4.
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Our Thought Process
Let us consider the tree rooted at an arbitrary node.

How can we break the problem down?

We observe that the longest (simple) path in our tree (diameter) can either pass
through our root or not.

1 Does not pass through the root
In this case our longest path in our tree will be the longest of the paths entirely within
each of our root’s subtrees.

2 Does pass through the root
Then our longest path will be the concatenation of the two longest paths within subtrees
that start at the root of their respective subtrees.
These longest paths within the subtrees that start at the root are essentially the heights
of the subtrees.

Now our base cases are simply leaf nodes (ie. subtrees with one node) which clearly
have a diameter of 0 and a height of 0.
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Let’s try and implement!

Figure: https://vjudge.net/contest/620660
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Implementation
#include <iostream>

#include <vector>

#include <set>

#include <algorithm>

using namespace std;

int n;

vector <vector<int>> edges; // adjacency list

vector <int> parent; // the parent of each node (determined by dfs)

vector <int> dp; // the longest path in the subtree rooted at each node

vector <int> height; // the height of each nod

void subtree_diameter(int i);

int root;
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Moar implementation
int main(void) {

cin >> n;

// resize everything

edges.resize(n + 5);

dp.resize(n + 5,-1);

height.resize(n + 5, -1);

parent.resize(n + 5, -1);

for (int i = 1; i < n; i++) {

int u, v;

cin >> u >> v;

edges[u].push_back(v);

edges[v].push_back(u);

}

root = 1; // arbitrary root

subtree_diameter(root); // run algorithm on root node

cout << dp[root]; // print answer

return 0;
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And again :qiqifallen:
//calculates the diameter of the subtree rooted at i

void subtree_diameter(int i) {

//base case: is a leaf in the rooted tree

if (edges[i].size() <= 1 && i != root) {

height[i] = 0;

dp[i] = 0;

return;
}

int height_of_tallest_child = -1;

int height_of_2nd_tallest_child = -1;

int max_child_diameter = 0;
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Implementation again

for (int j: edges[i]) {

if (j == parent[i]) continue;
parent[j] = i; // make the node that we just came from the parent

subtree_diameter(j); // recurse on each child

// update the values for the 2 tallest children and longest path contained within a child

if (height[j] > height_of_tallest_child) {

height_of_2nd_tallest_child = height_of_tallest_child;

height_of_tallest_child = height[j];

} else {

height_of_2nd_tallest_child = max(height_of_2nd_tallest_child, height[j]);

}

max_child_diameter = max(max_child_diameter, dp[j]);

}
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And again :qiqifallen:

// the height of the subtree rooted at i

height[i] = height_of_tallest_child + 1;

// the longest path in the subtree if it doesnt include the root of the subtree

int excl_i = max_child_diameter;

// the longest path in the subtree if it does include the root node

int incl_i = (height_of_tallest_child + 1) + (height_of_2nd_tallest_child + 1);

// the longest path contained within the subtree overall.

dp[i] = max(incl_i, excl_i);

return;
}
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Binary Representation
In computer systems, we typically store numbers in their binary representation.

Binary numbers use base 2, with digits 0 and 1.
To find the number represented by a sequence of binary digits we multiply each digit
by the appropriate power of 2 and add up the results. In general, the value of an n-bit
sequence

bn−1...b1b0[2] = bn−12
n−1 + · · ·+ b12

1 + b02
0 =

n−1∑
i=0

bi2
i

For example, 10011[2] represents
1 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 = 16 + 2 + 1 = 19.
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Binary Representation
Similarly, 1000100101[2] is represented by

so that 1000100101[2] = (1 ∗ 1) + (1 ∗ 4) + (1 ∗ 32) + (1 ∗ 512) = 1 + 4+ 32 + 512 = 549.
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Bitwise Operators
You likely already know basic logical operations like AND and OR. Using

if(condition1 && condition2)

checks if both conditions are true, while

if(c1 || c2)

requires at least one condition to be true.

Same can be done bit-per-bit with whole numbers, and it’s called bitwise operations.
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Bitwise Operators
The bitwise NOT, or bitwise complement, is a unary operation that performs logical
negation on each bit, forming the ones’ complement of the given binary value.

int x = 8; // 0111 in binary

x = ~x; // 1000 in binary

The bitwise AND is a binary operation that takes two binary representations and
performs the logical AND operation on each pair of the corresponding bits.

int x = 5; // 0101 in binary

int y = 3; // 0011 in binary

int z = x & y; // 0001 in binary
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Bitwise Operators
The bitwise OR is a binary operation that takes two binary representations and
performs the logical inclusive OR operation on each pair of corresponding bits.

int x = 5; // 0101 in binary

int y = 3; // 0011 in binary

int z = x | y; // 0111 in binary

The bitwise XOR is a binary operation that takes two binary representations and
performs the logical exclusive OR operation on each pair of corresponding bits.

int x = 5; // 0101 in binary

int y = 3; // 0011 in binary

int z = x ^ y; // 0110 in binary
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Bitwise Operators
Left Shift <<: This operation moves all the bits in a binary number to the left by a
specified number of positions.
Right Shift >>: This operation moves all the bits in a binary number to the right by a
specified number of positions.
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Bitwise Operators
In Bitmask DP, we will need the following operations
To test if a bit n is set in x:

if (x & (1 << n)) {

}

To set a bit n in x:

x = x | (1 << n);

To clear a bit n in x:

x = x & ~(1 << n);
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Bitmask DP
Bitmask DP is one common technique to solve intractable problems.
Intractable problems are problems that can be solved in theory but in practice, take
too long for their solution to be useful.

The best-known solutions for intractable problems generally run in exponential or
subexponential time.
Some examples of intractable problems are

Subset sum: Given a set of integers, is there any subset whose sum is 0?
Hamiltonian path: Given a graph, does a Hamiltonian path exist?
Travelling salesman: Given a graph, what is the shortest possible route that visits each
city exactly once and returns to the origin city?
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Travelling Salesman

There are N cities (2 ≤ N < 20). Given the distance between each pair of cities,
find the shortest possible path that visits every city and returns to the origin city (city
1).

Brute force?
Since we are given a weighted, complete graph, we can simply try every single route
from the starting city and calculate the cost of the route, then take the minimum cost
route we encounter.
Time complexity?
Since there are a total of N ! different routes which we could have taken, the total time
complexity is O(N !). Unfortunately, this is too slow to pass :(
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Travelling Salesman

There are N cities (2 ≤ N < 20). Given the distance between each pair of cities,
find the shortest possible path that visits every city and returns to the origin city (city
1).

Assume we are comparing two different ways to go from City A to City B, both of
which visit the same intermediate cities but in a different order.
Logically, whichever one of these two paths is shorter will always be better than the
other, and will always be the preferred path to take.
Therefore, there is no reason to continue adding cities onto the longer path. Unlike
the naive solution, the dynamic programming solution for this problem takes
advantage of this
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Travelling Salesman

There are N cities (2 ≤ N < 20). Given the distance between each pair of cities,
find the shortest possible path that visits every city and returns to the origin city (city
1).

Let’s think of a possible sub-problem that we can reuse to build up to the full solution.

Let dp[S][j] represent the shortest path that starts from vertex 1, visits every single
city in S and ends at city j.
The recurrence can then be formulated as

dp[S][j] = min
u∈S

(dp[S \ {u}][u] + dist[u][j]).
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Travelling Salesman

There are N cities (2 ≤ N < 20). Given the distance between each pair of cities,
find the shortest possible path that visits every city and returns to the origin city (city
1).

Note that to represent S in our implementation, we will use our previously discussed
bitwise tricks. We represent S with a number where if the i-th least significant bit of
the number is set, it represents that city i is in the set.

E.g., the number 11 = 1011[2] represents we have visited cities 0, 1 and 3. Note that it
might be more convenient to then 0-index our cities.
The total number of subproblems is simply the size of our dp array which is dp[S][j],
where S ≤ 2n and j ≤ n, so we have 2n subproblems.
Each subproblem takes n iterations of a for loop to solve, so the total time complexity
is O(n22n).
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Implementation
int tsp(int mask, int cur) {

if (mask == (1 << n) - 1) {

// now we go from node cur -> node 0

return adj[cur][0];

}

if (dp[mask][cur] != -1) return dp[mask][cur];

int ans = 1e9;

for (int v = 0; v < n; v++) {

if (!(mask & (1 << v))) { // this node is unvisited

int cur = adj[cur][v] + tsp(mask | (1 << v), v);

ans = min(ans, cur);

}

}

return dp[mask][cur] = ans;

}
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Elevator Rides problem

Problem statement: There are n people who want to get to the top of a building which
has only one elevator. You know the weight of each person wi and the maximum allowed
weight in the elevator x. What is the minimum number of elevator rides?

Constraints: 1 ≤ n ≤ 20, 1 ≤ x ≤ 109, 1 ≤ wi ≤ x

Example:
If n = 4, x = 10 and the four people’s weights were: 4, 8, 6, 1

In this case here, we’ll put 4, 6 in one elevator and 1, 8 in another elevator, so our program
should return the number of elevators we used = 2.

Programming Committee Advanced Dynamic Programming Week 1 Friday T2 2024 27 / 33



Elevator Rides problem

Problem statement: There are n people who want to get to the top of a building which
has only one elevator. You know the weight of each person wi and the maximum allowed
weight in the elevator x. What is the minimum number of elevator rides?

Constraints: 1 ≤ n ≤ 20, 1 ≤ x ≤ 109, 1 ≤ wi ≤ x

Example:
If n = 4, x = 10 and the four people’s weights were: 4, 8, 6, 1

In this case here, we’ll put 4, 6 in one elevator and 1, 8 in another elevator, so our program
should return the number of elevators we used = 2.
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Approach 1 - Greedy
A possible idea we may have (at least what I had as a first thought) is that we can keep
putting in the heaviest people into each elevator until we cannot fit anymore people in
which case we add 1 to our answer and start on a new elevator.

Try on example test case:
Example: If n = 4, x = 10 and the four people’s weights were: 4, 8, 6, 1
Ok this seems to work!

Until it doesn’t...
If we have this test case: n = 7, x = 10 where people’s weights are: 6, 3, 3, 2, 2, 2, 2

Greedy solution: will choose to put (6, 3), (3, 2, 2, 2), (2) which is 3 groups
Optimal solution: will get (6, 2, 2), (3, 3, 2, 2) which is only 2 groups. Therefore we are in
serious trouble!
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Approach 2 - Brute force
Often when elegant solutions don’t work out we turn to our old friend, brute force! Any
ideas for how we can attack this with brute force?

We can check every order people can stand in and run a simulation of putting people into
elevators in that order. From there we just choose the smallest number of elevators. Gotta
love the brute-force strategy!!

Unfortunately, no algorithm is perfect:(
When we analyze the complexity, we find O(n! ∗ n) because we need to generate every
permutation n! of them, and simulate each one O(n)

As a rule of thumb, if we need to use permutations, the max n can be is 11. Because
11! = 39, 916, 800. Any guesses for what 20! ∗ 20 is?

It’s ahhh... this number... 48, 658, 040, 163, 532, 800, 000. Not gonna work in a million years!
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Solution - DP!
A crucial step in solving a DP problem is to identify what are the things we actually need
in order to solve the problem. In other words, the states / sub-problems. Often times if
we analyze our brute-force solution, we can identify redundancies.

Observation: We don’t care about the ordering!
If we are deciding who’s the ith person in the optimal "elevator-entering order" and we’re
given: the subset of people that were in the first i− 1 places. We only care if there exists
an ordering that achieves the following, not the actual ordering itself.

1 Minimizes the number of elevators that we’ve used for the first i− 1 people
Because we need to make an optimal choice in which we prefer smaller elevator counts.

2 Maximizes space in the last elevator
For two solution options with the same elevator counts, we want the one with more
space in the last elevator it used. Because then maybe we can fit this ith person in.
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Sub-problem definition

In this case, the information stored by number of elevators used and space in the last
elevator replaced the need to know how the first i− 1 people are ordered.

With our sub-problem definition being:
dp[subset of i− 1 people] stores a pair(min elevators,max space in last elevator)

To represent this state of a subset, we use a bitmask of length n where each on-bit
represent people in the subset, and each off-bit represent people not in the subset.

Complexity: In total we would have 2n possible dp states and each calculation will
require O(n) thus our time complexity have now become O(2n ∗ n). Much better!
Tip: for problems which brute-force solution has factorial time complexity, try think of
using bitmask DP to turn into exponential complexity.
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Transition + Implementation
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Further events
Please join us for:

Math Royale (next Thursday 1pm)
Utilising C++ to tackle coding interviews (W3 Friday)

All details are on our facebook, discord and instagram!
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